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a b s t r a c t 

Despite the increasing popularity of mobile applications and the widespread adoption of encryption techniques, 

mobile devices are still susceptible to security and privacy risks. In this paper, we propose ActiveTracker , a new 

type of sniffing attack that can reveal the fine-grained trajectory of userâs mobile app usage from a sniffed 

encrypted Internet traffic stream. It firstly adopts a sliding window based approach to divide the encrypted 

traffic stream into a sequence of segments corresponding to different app activities. Then each traffic segment is 

represented by a normalized temporal-spacial traffic matrix and a traffic spectrum vector. Based on the normalized 

representation, a deep neural network (DNN) model which consists of an app filter and an activity classifier 

is developed to extract comprehensive features from the input and uncover the crucial app usage trajectory 

conducted by the user. By extensive experiments on real-world app usage traffic collected from volunteers and 

on our synthetic traffic data, we show that the proposed approach achieves up to 79.65% accuracy in recognizing 

app trajectory over encrypted traffic streams. 
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. Introduction 

The popularity of mobile applications (apps) is increasing dramati-
ally in the past few years. People frequently use mobile apps for social
nteraction, online shopping, gaming, route navigation, enjoying music,
atching videos, etc. According to the report [1] , in the year of 2018,
obile apps accounted for 58% of worldwide Internet traffic and will

ontinue to grow rapidly. 
Due to the broadcast nature of wireless communications, mobile de-

ices are susceptible to security and privacy risks. Malicious attacks
uch as sniffing may reveal users’ sensitive information [2–6] . For ex-
mple, the traffic classification techniques [7,8] , by inspecting the head-
rs (e.g., protocol type, IP address, port, etc) of the IP packets and the
ayloads, can infer the application types and the corresponding pro-
ocols (e.g., email, news, VoIP, etc). To enhance security, encryption
echniques have been applied in different levels of the communication
rocess [9] . For example, the Transport Layer Security (TLS) protocol
as been widely used by many mobile apps to encrypt the application
ata to avoid the inspection of payload [10,11] . The Internet Protocol
ecurity (IPsec) protocol can be used to encrypt data flows between
 pair of hosts. The Wired Equivalent Privacy (WEP) and Wi-Fi Pro-
ected Access (WPA) standard have been widely applied in wireless local
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rea networks (WLANs) to prevent unauthorized access to the network.
owever, the recent researches [12–14] showed that, the information
f mobile app usage can be inferred by examining the temporal-spacial
atterns of the encrypted Internet traffic packets. 

The works of app fingerprinting [15–18] tended to establish unique
eatures for app distinction. The features were extracted from the traf-
c level, code level, and system level. For example, NetworkProfiler
15] automatically generated network profiles for identifying Android
pps according to the HTTP headers in the traffic level. AppDNA [19] in-
pected the function-call-graph to form app fingerprint in the code level.
OWERFUL [17] fingerprinted mobile apps by analyzing their power
onsumption patterns in the system level. 

Recently, several works focused on in-app activity classification
12,13,20] that aimed to recognize the usage of different services within
 particular app such as Whatsapp. Fu et al. proposed a system for classi-
ying service usages of mobile messaging apps by jointly modeling user
ehavioral patterns, network traffic characteristics, and temporal de-
endencies [12] , and developed an online analyzer to improve feature
xtraction and achieve in-app activity classification in real-time [13] .
owever, the existing works only focused on identifying the activity
ithin a particular app, and they lacked the ability to recognize both
pp and in-app activity in a fine-grained level. 
e 2020 
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Fig. 1. An example of app trajectory recogni- 

tion. 
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In this paper 1 , we address a more challenging task: uncovering the
rajectory of user’s mobile app usage from a continuous encrypted In-
ernet traffic stream. Specifically, we focus on the app trajectory recogni-

ion problem : inferring which apps are used to conduct what activities by
nalysing the encrypted Internet traffic stream sniffed from a user. Fig. 1
llustrates an example that a malicious attacker sniffs the encrypted traf-
c of a user via a public access point. As shown in the figure, there is a
lear pattern (e.g., the packet size, the packet interval, etc.) in the en-
rypted traffic stream when the user conducts different activities with
ifferent apps. By exploring the patterns, a well-designed algorithm can
ncover the trajectory of mobile app usage in a fine-grained level. In
ther words, the described technology can be considered as a new form
f attack: an adversary can sniff the encrypted traffic and infer user’s
ensitive information such as “sending pictures with Skype and trans-
erring money with PayPal ”. 

The conventional works of app fingerprinting and in-app activity
lassification cannot solve the app trajectory recognition problem di-
ectly. The reason and technical challenges are discussed as follows.
irstly, the conventional approaches were designed for recognizing ei-
her app or activity, but not both. The combination of apps and activities
orms a more complicated classification task, which yields low recogni-
ion accuracy with the conventional approaches (as shown in the per-
ormance analysis in Section 6 ). Secondly, the conventional approaches
sed hand-crafted features for classification. The extraction of features
eavily relies on human experience, and the hand-crafted features are
ot thorough enough to differentiate similar activities on different apps
e.g., text messaging with Skype and text messaging with WeChat),
hich leads to poor performance as shown in Section 6 . Thirdly, to un-

over the trajectory of app usage from a continuous encrypted traffic
tream, a method is needed to correctly partition the traffic stream into
egments representing different activities, which has not been well stud-
ed in the past. 

To address these challenges, we propose ActiveTracker, a novel deep
earning framework to uncover the trajectory of app usage from the en-
rypted Internet traffic stream. Inspired by the great success of deep
earning techniques in different research areas such as street-level im-
gery [22–25] and trajectory prediction [26–28] , we exploit the ability
f deep learning in automatic feature extraction from complex high-
1 This paper is an extended version of the conference paper published in [21] . 

n this paper, significant modifications have been made to improve the practica- 

ility of the research problem, enhance the solution framework and algorithm 

ith rationale, and provide additional experimental results with detailed anal- 

sis. 

2

 

c

imensional input signals and end-to-end learning to capture non-linear
ependencies for app trajectory recognition. In the proposed deep learn-
ng framework, it first adopts a sliding window based approach to divide
he traffic stream into a sequence of segments, where each segment cor-
esponds to an app activity. The traffic segment is then normalized and
epresented by a temporal-spacial traffic matrix and a traffic spectrum
ector. Using the normalized data as input, a deep neural network (DNN)
odel is proposed for activity recognition. Combining the recognition

esults of the sequence of traffic segments, the trajectory of app usage
an be uncovered, which may lead to the leakage of sensitive personal
nformation of the mobile users. 

Table 1 highlights the differences of ActiveTracker and the existing
orks on app fingerprinting and in-app activity classification. The main

esults and contributions of this paper are summarized as follows: 

• We design a novel sliding window based approach for encrypted
traffic stream segmentation, which is able to accurately partition an
encrypted Internet traffic stream into multiple single-activity sub-
streams. 

• We propose a DNN-based classification model for activity recogni-
tion from traffic segments. The proposed model uses convolutional
neural network to extract features from the traffic segments auto-
matically, and achieves high accuracy in activity recognition. To the
best of our knowledge, we are the first to solve the problem of app
trajectory recognition over encrypted Internet traffic streams. 

• We conduct extensive experiments based on real-world Internet traf-
fic collected from volunteers. The results show that the proposed ap-
proach achieves up to 79.65% accuracy in uncovering app trajectory
from a long traffic stream. Our work will draw people’s attention to
privacy protection of mobile app communications. 

The rest of the paper is organized as follows. Section 2 summarizes
he related works. Section 3 formulates the research problem of app tra-
ectory recognition over encrypted traffic streams. Section 4 introduces
ur proposed solution in detail. Section 5 introduces our data collection
ethod and the statistics of the collected traffic. Section 6 evaluates our

olution framework with extensive experiments. Finally, we conclude
ur paper in Section 7 . 

. Related work 

We summarize the related work into three categories: Internet traffic
lassification, app fingerprinting, and in-app activity classification. 
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Table 1 

Comparison of ActiveTracker and the existing works. 

App recognition Activity recognition App trajectory recognition Feature Classifier 

App fingerprinting ✓ × × hand-crafted SVM, random forest, etc. 

In-app activity classification × ✓ × hand-crafted SVM, random forest, etc. 

Active Tracker ✓ ✓ ✓ automatic Deep neural network 

2
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.1. Internet traffic classification 

The conventional traffic classification focused on distinguishing the
raffic generated by different Internet protocols. Zhang et al. designed
 nearest neighbor-based method to address the problem of very few
raining samples [29] . Wang et al. proposed a semi-supervised traffic
lustering scheme called SBCK [30] that made decisions with consider-
tion of some background information in addition to the observed traffic
tatistics. Lotfollahi et al. proposed Deep Packet [31] , which embedded
tacked autoencoder and convolutional neural network to identify traf-
c types and end-user apps. Kohout et al. proposed to identify applica-
ions in network traffic by exploiting unique communication patterns
f applications and communication protocols [32] . Li et al. designed
 novel neural network called BSNN [33] to predict application pro-
ocols. Besides the above works, some researchers focused on devising
he classification methods specifically for multimedia traffic: Dong et al.
ropsed a novel feature selection method to extract flow statistical fea-
ures of video traffic flows, and then developed a hierarchical k-Nearest
eighbor (k-NN) classification algorithm based on the selected features

34] ; Dias et al. presented a real-time classification module for video
treaming traffic [35] ; more recently, Wu et al. proposed a novel feature
election and instance purification method based on consistency mea-
ure for multimedia traffic classification [36] . Anderson et al. analyzed
ix common machine learning algorithms, and showed how they each
erformed on the problem of detecting malicious, encrypted network
essions [37] . However, the above works mainly focused on Web traffic
lassification, and did not consider the traffic generated by mobile apps.

.2. App fingerprinting 

App fingerprinting aims to extract unique features from traffic level,
ode level, and system level to identify the app usage. Dai et al. pro-
osed a fingerprint-based technique, called NetworkProfiler [15] , which
utomatically generated network profiles for identifying Android apps
n the HTTP traffic. Specifically, they chose the combination of HOST
eld within the HTTP header and invariant patterns within the HTTP
eader as the fingerprint of an app. Xu et al. built a system called Flow
ecognition (FLOWR) [38] , which learned the apps’ distinguishing fea-

ures via traffic analysis. It focused on key-value pairs in HTTP headers
nd identified the pairs suitable for app signatures. Yao et al. [16] gen-
rated conjunctive rules from HTTP flow header to identify app. Ranjan
t al. [39] transformed app identification into an information retrieval
roblem, and used lexical similarity as a metric for classification task.
owever, the works above assumed that mobile apps run over HTTP,
nd thus their methods were not applicable over encrytped Internet
raffic. To solve the problem of identifying apps in encrypted traffic
treams, [40–42] adopted machine learning techniques to avoid the in-
pection of payloads. Moreover, Sengupta et al. devised a novel set of bit-
equence based features to help differentiate Android apps [11] . Besides
achine learning techniques, researchers also developed other meth-

ds for app fingerprinting over encrypted traffic. Chen et al. proposed
AAF [43] which utilized information in DNS traces and handshake

ertificates. Korczy ń ski et al. first proposed to employ first-order homo-
eneous Markov chains to model possible sequences of the SSL/TLS mes-
age types [44] . More recently, Shen et al. proposed a method based on
he second-order homogeneous Markov chains to model message type
ransitions in SSL/TLS sessions for each specific application [10] . How-
ver, the above works only focused on recognizing the apps, ingoring
he identification of the activities conducted with the apps. 

.3. In-app activity classification 

In-app activity classification aims to recognize the usage of different
ctivity within a particular app such as Whatsapp. Xu et al. identified
raffic from distinct apps based on HTTP signature using anonymized
etwork measurements from a tier-1 cellular carrier [45] . Fu et al. de-
eloped CUMMA [12] , which classified in-app activities by jointly mod-
ling user behavioral patterns, network traffic characteristics, and tem-
oral dependencies. In their follow-up work [13] , they designed an effi-
ient feature selection framework to select most discriminative features
f network traffic to meet the online efficiency requirement, and a ran-
om forest classifier with filtering (FRF) to classify in-app activities. In
46] , Fu el al. devised a multi-label multi-view logistic classification
ethod which first constructed the packet-length view and the time-
elay view to exploit their mutual agreement, and then learned a multi-
abel multi-view logistic classifier to overcome the interference from
ixed usage traffic. In their extended work [20] , they further incorpo-

ated the idea of multi-view learning into multi-label logistic predictive
odel to improve the prediction accuracy. 

In summary, the existing works focused on either app recognition or
ctivity recognition over Internet traffic, but none of them can identify
oth app and activity at the same time. To the best of our knowledge,
ur work is the first to apply deep learning techniques to solving the
pp trajectory recognition problem, which hasn’t been addressed in the
ast. 

. Problem formulation 

In this section, we introduce the adversary model for recognizing app
rajectory from encrypted traffic and formulate the problem of mobile
pp traffic segmentation and classification. 

.1. Adversary model 

We consider the scenario that an adversary aims to uncover the tra-
ectory of app usage of a mobile user, as illustrated in Fig. 1 . Since
ireless communications are broadcast, the attacker can sniff the en-

rypted Internet traffic of the target user on the same WLAN to collect
ata streams for further analysis. A number of sniffing tools such as Wire-

hark or aircrack-ng can be used to collect the wireless traffic between
osts and the access point. Such attack can be applied to most encrypted
ireless networks such as the airport’s WiFi and the coffee-shops’ net-
orks. 

.2. Definitions and assumptions 

Here we provide some definitions and assumptions used in the rest
f this paper. 

efinition 1 (Encrypted Internet traffic stream) . An encrypted Internet
raffic stream is defined as a sequence of packets 𝐹 = { 𝑝 1 , 𝑝 2 , … , 𝑝 𝑁 

} ,
here p i (1 ≤ i ≤ N ) is the information of the i th observed packet repre-

ented by 𝑝 𝑖 = ⟨𝑇 𝑖 , 𝐿 𝑖 , 𝑂 𝑖 ⟩, where T i is the timestamp of the packet; L i is
he length of the packet; and O i ∈ {0, 1} represents the direction of the
acket (sent or received). 
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Fig. 2. The framework of DNN based app tra- 

jectory recognition. 

Fig. 3. Illustration of the sliding window 

mechanism. 

Fig. 4. Illustration of temporal-spatial matrix 

construction. 
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some moment by analysing the encrypted Internet traffic stream. 
We assume the adversary can observe only very limited information
rom the encrypted packet, i.e., only the timestamp, packet length, and
irection are observable to the attacker. 

The length of an Internet traffic stream is defined as the time interval
etween the first and the last packet, i.e., 𝑙𝑒𝑛𝑔𝑡ℎ ( 𝐹 ) = 𝑇 𝑁 

− 𝑇 1 . 

efinition 2 (Encrypted traffic segment) . An encrypted traffic segment
s defined as a continuous subsequence of an encrypted Internet traffic
tream. For example, 𝐹 ( 𝑇 𝑖 , 𝑇 𝑗 ) = { 𝑝 𝑖 , 𝑝 𝑖 +1 , … , 𝑝 𝑗 } is an encrypted traffic
egment of F . 

Normally, an encrypted traffic segment corresponds to some app ac-
ivity of the user. We assume that the activity should last for at least 15 s.
herefore the length of F ( T i , T j ) should be longer than 15 s. If the length
f F ( T i , T j ) is too short, there won’t be enough statistical information for
ctivity recognition. 

efinition 3 (App activity recognition) . The app activity recognition
ask is to find a mapping from an encrypted traffic segment to the app
ctivity: F ( T i , T j ) → ⟨app, activity ⟩, where the app activity is represented
y a tuple ⟨app, activity ⟩. The task aims to recognize both the name of
he app and the activity conducted with it. 

efinition 4 (App trajectory recognition) . The app tra-
ectory recognition task tends to map an encrypted In-
ernet traffic stream F to a sequence of app activities:
 → ⟨𝑇 1 , 𝑎𝑝𝑝 1 , 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 1 ⟩, ⟨𝑇 2 , 𝑎𝑝𝑝 2 , 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 2 ⟩, … , ⟨𝑇 𝐾 , 𝑎𝑝𝑝 𝐾 , 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐾 ⟩. In
ther words, it aims to uncover which app is used for what activity at
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Fig. 5. The proposed DNN structure. 
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.3. Problem statement 

Given a sniffed encrypted Internet traffic stream, the goal of the at-
acker is to recognize the app trajectory of the stream. To achieve this
oal, we can first partition the traffic stream into segments, then recog-
ize the app activity of each segment using a classification algorithm,
nd finally combine the results to form the app trajectory. Specifically,
he app trajectory recognition problem can be solved by considering the
ollowing sub-problems: 

.3.1. Encrypted internet traffic stream segmentation 

Given an encrypted Internet traffic stream, the objective of the first
ub-problem is to find a set of split points to partition the stream into a
equence of encrypted traffic segments, such that the packets within a
egment are generated from the same app activity usage. 

.3.2. Encrypted traffic segment classification 

Given an encrypted traffic segment, the objective of the second sub-
roblem is to identify the name of the app as well as the in-app activity
rom the traffic. 

Next, we will propose an approach to uncover app trajectory from the
ncrypted Internet traffic stream based on deep neural network (DNN).
. App trajectory recognition based on DNN 

In this section, we first overview the framework of app trajectory
ecognition based on DNN. Then, we in detail introduce three major
omponents of our framework: a novel sliding window based approach
or encrypted traffic segmentation, a method for data representation,
nd a DNN classification model for app activity recognition. 

.1. Framework 

Fig. 2 shows the framework of DNN based app trajectory recognition
rom encrypted traffic, which consists of three major components. 

.1.1. Traffic segmentation 

Given a continuous encrypted Internet traffic stream, the first step is
o partition the stream into segments. We adopt a sliding window based
pproach to divide the stream into a sequence of segments, where each
egment corresponds to an app activity. 

.1.2. Data representation 

Given the traffic segments, we transform them into normalized data
s the input of the DNN classifier. Specifically, we represent each traf-
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Algorithm 1 Sliding window based approach for encrypted traffic seg- 
mentation. 
Input: 

An encrypted Internet traffic stream 𝐹 = { 𝑝 1 , 𝑝 2 , … , 𝑝 𝑁 

} . 
Output: 

Split points 𝑆𝑃 = { 𝑇 1 , 𝑇 2 , … , 𝑇 𝑀 

} such that the packets between two 
adjacent split points are generated by a single app activity. 

1: Initial 𝑆𝑃 = ∅, threshold 𝜑 = 0 . 2 ; 
2: Initial the length of sliding window 𝐿 = 10 𝑠 ; 
3: Set the sliding window at the beginning of 𝐹 ; 
4: repeat 

5: Compute the similarity 𝑠 = 𝑆𝑖𝑚 ( 𝑆 𝑙 , 𝑆 𝑟 ) ; 
6: Store the similarity 𝑠 and the sliding window’s current location 

𝑇 ; 
7: Move the sliding window rightwards 0.1 s; 
8: until the sliding window is at the end of 𝐹 ; 
9: Generate the similarity curve 𝐹 𝐶 using the stored 𝑠 and 𝑇 ; 

10: Feed 𝐹 𝐶 into a low-pass filter, obtaining a smooth similarity curve 
𝑆𝐶; 

11: Identify the split points by searching the local maximum points in 
𝑆𝐶 and filter the false split points by discarding the points whose 
values are less than 𝜑 ; 

12: Add the identified split points to 𝑆𝑃 ; 
13: return 𝑆𝑃 ; 
c segment by a temporal-spacial traffic matrix and a traffic spectrum
ector. 

.1.3. Segment classification 

Using the normalized data as input, we propose a DNN model for app
ctivity recognition. The DNN model uses a 2D convolutional neural
etwork (CNN) and a 1D CNN to extract the features from different
omains and combine these features to recognize the app activity and
ncover the app trajectory. 

The three components are presented in detail below. 

.2. Sliding window based traffic segmentation 

We propose a novel sliding window based approach for encrypted
raffic segmentation. Given a continuous encrypted traffic stream, the
ask of traffic segmentation is to find the split points that partition the
tream into multiple traffic segments that correspond to different app
ctivities. Intuitively, different app activities present different statistical
atterns in their traffic regarding the packet lengths and packet inter-
als. Based on the intuition, we devise a sliding window based approach
o search the split points that divide the traffic stream into segments with
igh statistical difference in their packet distributions. 

The proposed approach includes four steps: sliding window mech-
nism, similarity curve generation, low-pass filtering, and split points
dentification, which are explained below. 

.2.1. Sliding window mechanism 

The sliding window mechanism is illustrated in Fig. 3 . We use a
liding window with length L to include a set of packets from the traf-
c stream. The middle point of the window divides the set of packets
ithin the window into two parts: the left part S l and the right part S r .
e compute the similarity of the packet statistical characteristics of the

wo parts: Sim ( S l , S r ). If S l and S r belong to the traffic of different activ-
ties, the similarity between them should be low. By moving the sliding
indow and observing the change of similarities, the split points can be

dentified following the method introduced below. 

.2.2. Similarity curve generation 

To assess the similarity of the packet statistical characteristics in S l 
nd S r , we adopt the Kullback-Leibler (K-L) divergence [47] as the assess-
ent metric for the two packet sets. The K-L divergence, also known as

elative entropy, is formally formulated as follows: 

 𝐾𝐿 ( 𝑆 𝑙 ||𝑆 𝑟 ) = 

∑
𝑖 

𝑆 𝑙 ( 𝑖 ) 𝑙𝑜𝑔 
𝑆 𝑙 ( 𝑖 ) 
𝑆 𝑟 ( 𝑖 ) 

, (1)

here S l ( i ) and S r ( i ) are the discrete probability distributions of the left
art and the right part accordingly. 

In mathematical statistics, the K-L divergence is a measure of how
ne probability distribution is different from another probability distri-
ution. Considering that the probability distributions (e.g. on packet
ength) of two packet sets that are generated by different activities
hould be very different, K-L divergence would be a good metric for the
imilarity assessment between S l and S r . Specifically, K-L divergence is
he expectation of the logarithmic difference between the probability
istributions S l ( i ) and S r ( i ). If the probability distributions S l ( i ) and S r ( i )
re exactly the same, the K-L divergence equals 0. The larger K-L diver-
ence value means the more difference between them. 

In practice, we consider the similarity between S l ( i ) and S r ( i ) regard-
ng their distributions on packet length and packet interval and the sim-
larity Sim ( S l , S r ) can be computed by the mean of their K-L divergences:

𝑖𝑚 ( 𝑆 𝑙 , 𝑆 𝑟 ) = 

𝐷 

𝑙 𝑒𝑛𝑔𝑡ℎ 

𝐾𝐿 
( 𝑆 𝑙 ||𝑆 𝑟 ) + 𝐷 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
𝐾𝐿 

( 𝑆 𝑙 ||𝑆 𝑟 ) 
2 

(2)

We move the sliding window step by step along the encrypted traf-
c stream, and compute the similarity on each point, which forms a
imilarity curve as shown in Fig. 3 . According to the figure, when the
liding window is within the same activity, the curve is flat. When the
liding window moves across different activities, the curve first ascends
nd then descends. The peak of the curve appears around the split point
f the two adjacent activities, since the maximum dissimilarity between
he two distributions should occur at the split point in theory. Such prop-
rty can be employed to identify the split points in the traffic stream,
hich will be introduced below. 

.2.3. Low-pass filtering 

Due to the randomness of the data packets, the similarity curve is
ot smooth and it fluctuates as illustrated in Fig. 3 . It is hard to iden-
ify the split points by searching the peaks along the curve. To reduce
he fluctuation and smooth the curve, we propose a low-pass filtering
pproach. 

In signal processing, a low-pass filter allows through signals with
requencies lower than a certain cutoff frequency and attenuates sig-
als with frequencies higher than the cutoff frequency. Low-pass filter
s widely used in signal systems to remove noises with high frequencies.

In our work, we adopt a cutoff frequency of 0.015 Hz, since we as-
ume an app activity lasts for at least for 15 s. 

.2.4. Split points identification 

After low-pass filtering, the similarity curve becomes smooth as il-
ustrated in Fig. 3 . Apparently, the split points correspond to the peaks
f the similarity curve. There are still some local peaks (e.g., the false
plit points illustrated in Fig. 3 ) that could cause confusion. However,
he values of these peaks are small, and most of them are less than 0.2,
hich means that the traffic streams around such small peaks are simi-

ar and they should not be considered as split points. This inspires us to
esign a heuristic approach for split points identification: we first detect
he local maximum points on the similarity curve, and then compare the
etected points with a predefined threshold (e.g., 0.2). If the similarity
alue on a local maximum point is greater than the predefined thresh-
ld, it will be identified as a split point. Using the above heuristics, we
an obtain a set of split points which partition the continuous traffic
tream into a set of traffic segments. 

Algorithm 1 summarizes the proposed sliding window based ap-
roach for encrypted traffic segmentation. 
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Table 2 

The configuration of DNN model. 

Network Configuration 

Input (1 ∗ 1500, frequency domain) Input (300 ∗ 150, time domain) 

Conv (filter = 1 ∗ 9, channel = 2) Conv (filter = 3 ∗ 3, channel = 2) 

Max Pooling Max Pooling 

Conv (filter = 1 ∗ 9, channel = 4) Conv (filter = 3 ∗ 3, channel = 4) 

Max Pooling Max Pooling 

Conv (filter = 1 ∗ 9, channel = 8) Conv (filter = 3 ∗ 3, channel = 8) 

Max Pooling Max Pooling 

Fully Connected 

Fully Connected Softmax 

Fully Connected 
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.3. Data representation 

After the traffic segmentation, we can get a set of traffic segments
ith different sizes. To obtain a normalized representation of each traffic

egment as the input of our proposed DNN classifier, we further propose
 data representation method to normalize the traffic segments. 

Since an app activity is assumed to be longer than 15 s, the segments
ith length less than 15 s will be discarded as they are unrecognizable.
or each segment, we extract 15-second traffic from the middle of it. We
hen represent the extracted traffic stream with a temporal-spacial traffic

atrix M and a traffic spectrum vector V . 

.3.1. Computation of the temporal-spatial traffic matrix M 

The quantification of M tends to capture the temporal-spacial corre-
ations of the encrypted traffic stream. In our paper, we represent M by
 k × k 2D matrix (for the traffic segment of 15 s, the value of k is empir-
cally set to 150 in our experiments) where each element M ij (1 ≤ i ≤ k ,
 ≤ j ≤ k ) corresponds to the number of packets arriving within 0.1 s
from the ( 𝑖 ∕10 − 0 . 1) th to the ( i /10)th second) and whose size falls in
he j th bin (since the maximum transmission unit for Ethernet is 1500
ytes, we set 𝑗 = ⌈ 𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 × 𝑘 

1500 ⌉ in practice). 
The direction of packets is also useful for differentiating different

ctivities, since some activities (e.g. video call, voice call) always alter-
atively send and receive packets, while other activities (e.g. send text
essages, location sharing) do not. To make use of the packet direction

o improve the recognition accuracy, we extend the size of M . Specif-
cally, we extend the temporal-spacial matrix M to the size of 2 k × k ,
here element M ij (1 ≤ i ≤ k , 1 ≤ j ≤ k ) corresponds to the number of

ent packets , and element 𝑀 𝑖𝑗 ( 𝑘 + 1 ≤ 𝑖 ≤ 2 𝑘, 1 ≤ 𝑗 ≤ 𝑘 ) corresponds to
he number of received packets . In other words, the direction of a packet
s indicated by the value of i (whether the value of i is greater than k )
n the extended temporal-spatial traffic matrix. 

To better illustrate how to construct a temporal-spatial traffic matrix,
e give an example which is presented in Fig. 4 . In the beginning, the
alues of all elements in the temporal-spatial matrix M are 0. For each
acket in the traffic segment, we first find its corresponding position
i.e. calculate the coordinate ( i, j )) in the matrix, and add one to the
alue in that position. For instance, for a sent packet which arrives at
.073 s and whose length is 1126 bytes, its corresponding position in
 is (1,113), since it arrives between 0 to 0.1 s and its length falls in

he 

⌈ 
1126×150 

1500 

⌉ 
= 113 𝑡ℎ bin. Thus, the value of M 1,113 (marked by a “ × ”

ymbol in the matrix as shown in Fig. 4 ) should be added by 1. 

.3.2. Computation of the traffic spectrum vector V 

The traffic spectrum vector V is computed as follows. We regard the
acket length as a signal of arrival time, and regard each packet as a
ampling on this signal. Obviously, these samplings are generated with
nstable time intervals. To obtain the traffic spectrum, we first conduct
ermite interpolation [48] to obtain an equally spaced (0.01 s) data

equence. Then, by using Discrete-Time Fourier Transform (DTFT) [49] ,
e can represent the 15-second traffic as a vector of length 1500 which

ontains frequency domain features. 

.4. Deep neural network model 

.4.1. Neural network architecture 

Inspired by the great success of DNNs in image recognition, natural
anguage processing, computer version, etc., we design a deep convolu-
ional neural network (CNN) architecture for app activity recognition.
t has been shown that deep CNNs are powerful in autonomous fea-
ure extraction from matrix data where features extracted in shallower
ayers of the CNN will be fed to the successive convolutional layers in
rder to form more abstract features. Compared with hand-crafted fea-
ures, the features extracted by CNN are more comprehensive, which
ould be exploited to differentiate similar activities on different apps
rom encrypted traffic in our system. Specifically, we propose a 2D CNN
tructure to extract features of a traffic stream from its temporal-spacial
raffic matrix, and a 1D CNN to extract features from sequential traffic
pectrum vector. The structure of the proposed deep neural network is
llustrated in Fig. 5 . 

According to the figure, the proposed architecture consists of a 2D
NN (right part of the figure) and a 1D CNN (left part of the figure). The
emporal-spacial traffic matrix respectively goes through three convolu-
ional layers and three max pooling layers, so does the traffic spectrum
ector. Then, the features extracted by both 1D CNN and 2D CNN are
oncatenated into a feature vector. This feature vector then goes through
 fully-connected layer. The fully-connected layer is able to decide the
ignificance of each feature and assign high weights to important fea-
ures. The output of the fully-connected layer is fed into an app filter

hat can determine whether the encrypted traffic is from an interested
pp or uninterested app, and an activity classifier that infers the specific
n-app activities generated by the user. Finally, combining the results of
pp filter and activity classifier, the model outputs the recognized app
ctivity with the highest probability. 

.4.2. Design of app filter and activity classifier 

In this section, we discuss the design of app filter and activity clas-
ifier illustrated in Fig. 5 . 

Since typically hundreds of apps are installed on a smartphone, the
dversary may only be interested in tracking the activities of a small
umber of apps. To achieve this, we apply an app filter to distinguish
he interested apps from the encrypted traffic. The app filter works as
 binary classifier, whose structure is illustrated in Fig. 5 . It consists of
wo fully-connected layers. It takes the feature vector from DNN as input
o infer whether the encrypted traffic is from the interested app or the
ninterested app. 

The activity classifier is applied to achieve fine-grained classification
f the app activities, whose structure is illustrated in Fig. 5 . It takes the
eature vector from DNN as input and uses a softmax layer to form the
lassifier. The softmax layer applies a softmax function [50] on the input
eature vector to produce the probability distribution over the predicted
abels. It is assumed that there are m types of activities, and the pre-
icted label is 𝑦 ∈ [1 , 2 , … , 𝑚 ] . Given an input x , the probability P ( y | x )
s estimated as follows, 

 

 

 

 

𝑃 ( 𝑦 = 1 |𝒙 ) 
⋮ 

𝑃 ( 𝑦 = 𝑚 |𝒙 ) 
⎤ ⎥ ⎥ ⎦ = 

1 
𝑚 ∑
𝑝 =1 

𝑒 𝑤 
𝑝 𝑁( 𝒙 ) 

⎡ ⎢ ⎢ ⎣ 
𝑒 𝑤 

1 𝑁( 𝒙 ) 

⋮ 
𝑒 𝑤 

𝑚 𝑁( 𝒙 ) 

⎤ ⎥ ⎥ ⎦ (3) 

here N ( x ) is the feature vector formed by the DNN and w is the pa-
ameters of the classifier that need to be learned. The predicted activity
lass 𝑦̂ is the maximum of these probabilities, 

̂ = argmax 
𝑦 

𝑃 ( 𝑦 |𝒙 ) . (4)

To train the model, we annotate the training data as two classes: the
et of interested app  and the set of uninterested app  . For interested
pps, we further annotate the specific activity that a user conducted
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Table 3 

The interested apps and activity types. 

# Location Picture Text Video Call Voice Call Transfer 

PayPal ✓
Hangouts ✓ ✓ ✓ ✓
Line ✓ ✓
Messenger ✓ ✓ ✓ ✓
QQ ✓ ✓
Skype ✓ ✓ ✓
Wechat ✓ ✓ ✓ ✓ ✓ ✓
Uninterested ✓ ✓ ✓

Table 4 

Statistics of the collected internet traffic. 

Class App Activity Records Packets Traffic Traffic/min 

1 PayPal transfer 593 104.3K 38.2M 218.9K 

2 Hangouts picture 611 1451.1K 1074.7M 3.1M 

3 Hangouts text 728 163.0K 35.8M 267.3K 

4 Hangouts video call 608 2180.4K 1076.1M 6.5M 

5 Hangouts voice call 574 437.8K 89.9M 585.8K 

6 Line picture 832 408.6K 259.3M 503.8K 

7 Line text 707 61.9K 10.8M 49.08K 

8 Messenger picture 395 194.2K 118.3M 6.5M 

9 Messenger text 493 79.6K 15.24M 62.78K 

10 Messenger video call 208 441.5K 219.4M 4.2M 

11 Messenger voice call 146 73.7K 17.47M 461.1K 

12 QQ video call 584 2834.9K 2077.2M 18.96M 

13 QQ voice call 562 726.5K 128.0M 1.2M 

14 Skype picture 831 4651.7K 4109.3M 29.37M 

15 Skype video call 569 1682.8K 935.9M 5.28M 

16 Skype voice call 656 850.4K 163.0M 851.4K 

17 Wechat location 673 276.3K 156.3M 777.4K 

18 Wechat picture 963 1956.4K 1515.1M 8.4M 

19 Wechat text 617 41.7K 8.11M 23.04K 

20 Wechat transfer 578 75.6K 21.5M 103.9K 

21 Wechat video call 570 1673.5K 349.2M 2.5M 

22 Wechat voice call 629 1048.9K 184.9M 1.2M 
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Fig. 6. The performance of traffic segmentation under different system param- 

eters. 

Table 5 

Performance of app filter. 

Traffic Type Precision Recall F-score Overall Acc. 

Interested app 99.26% 94.12% 96.62% 94.03% 

Uninterested app 61.82% 93.15% 74.32% 

c  

f

4

 

m

ith the app. The annotated traffic data forms the training set for the
lassifier. 

We adopt the Entropic Open-Set Loss J E ( x ) function [51] for the pro-
osed DNN model, which is defined as follows: 

 𝐸 ( 𝒙 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
− 𝑙𝑜𝑔𝑃 ( 𝑦 = 𝑐|𝒙 ) if 𝒙 is from class 𝑐 ∈  

− 

1 ||
||∑
𝑐=1 

𝑙𝑜𝑔𝑃 ( 𝑦 = 𝑐|𝒙 ) if 𝒙 belongs to  

(5)

here x denotes a training sample in the training set. 
The rationale of the Entropic Open-Set Loss is explained as follows.

t is a piecewise function. If the input sample x belongs to an interested
lass, by minimizing − 𝑙𝑜𝑔𝑃 ( 𝑦 = 𝑐|𝒙 ) , the probability that x is correctly
ecognized as an activity is maximized. If the input sample x belongs

o an uninterested class, by minimizing − 

1 ||
||∑
𝑐=1 

𝑙𝑜𝑔𝑃 ( 𝑦 = 𝑐|𝒙 ) , it forces

he model to have equal probability to recognize x as any of the labeled
ctivities. Therefore, it is easy to distinguish interested and uninterested
pps by the probability distribution of softmax. 

With the training set and the loss function, we train the DNN model
lternatively. We first train the activity classifier using the Entropic
pen-Set Loss function, which maximizes the probability that an ac-

ivity is correctly recognized and enlarges the differences of probability
istributions of interested and uninterested classes. We then fixed the
arameters of DNN, and use the output feature vector to train the app
lter, which intends to distinguish the interested and uninterested apps.

During model inference, the input encrypted traffic is first checked
y the app filter. If it is classified as an interested class, the activity
lassifier will further examine it, and output the predicted app activity
or the encrypted traffic. 

.4.3. Summary of model parameters 

In summary, the main parameters of each layer of the proposed DNN
odel are described in Table 2 . 
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Fig. 7. Performance of app classification (real- 

world dataset). 
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. Data collection and processing 

To evaluate the performance of our framework, we conducted experi-
ents based on both real-world collected smartphone traffic dataset and

ynthetic dataset. The dataset collection and precessing are described as
ollows. 

.1. Real-world smartphone traffic dataset 

We collected a dataset of encrypted Internet traffic from smart-
hones. We recruited 18 volunteers who were required to use a number
f apps with our specially configured handsets (Samsung Galaxy S7,
uawei G9 and Huawei P8 smartphones). The smartphones are con-
ected to a virtual Wi-Fi access point (AP) operated by a laptop (Dell
PS13-7390). A well-known sniffing tool, WireShark , is run on the lap-

op to crawl the packet information of the smartphones from the AP.
o ensure the robustness of the proposed framework, besides collecting
raffic data in the lab environment, we also collect data under different
etwork environments including library, student dormitory and home. 
We are particularly interested in tracking 7 popular mobile apps:
aypal, Hangouts, Line, Messenger, QQ, Skype and Wechat. We focus
n 6 types of in-app activities including location (sharing the current
ocation of the user), picture (sending a photo to a friend), text (sending
 text to a friend), video call, voice call, and money transfer. The inter-
sted apps and activities in our experiments are summarized in Table 3 .

During data collection, the volunteer are required to use different
pps to conduct different activities for a duration, and label the gener-
ted traffic with both app and activity. For example, a volunteer may
se Wechat to text with his friends in the first hour, and then use Skype
o make a video call in the next hour. Their apps, activities and the
orresponding time durations are logged as ground truth. Besides the
nterested 7 apps, the volunteers also use other apps (such as Alipay,
nstagram, etc) with different activities during data collection, and such
pps are labeled as “uninterested ” in the dataset. In the end, we form the
raining set with 80% random samples from the collected mobile traffic
or model training, and form the test set with the rest 20% samples for
erformance evaluation. 

The basic statistics of the collected app activity dataset are illustrated
n Table 4 . 
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Fig. 8. Performance of app classification (syn- 

thetic dataset). 
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.2. Synthetic dataset 

Since collecting real-world smartphone traffic is time-consuming,
anpower-expensive, and privacy-sensitive, the data collection can only

e performed by a small number of users. In order to test the perfor-
ance of the proposed model in a larger dataset, we propose a method

o generate a synthetic dataset based on the collected real-world data.
pecifically, we generate pseudo app-activity trajectories by concate-
ating activities from different users as follows. A pseudo app-activity
rajectory Trace is generated by 𝑇 𝑟𝑎𝑐𝑒 = { 𝑎𝑐𝑡 1 , 𝑎𝑐𝑡 2 , … , 𝑎𝑐𝑡 𝑚 } , where act i
 𝑖 = 1 , 2 , … , 𝑚 ) is a random activity of the smartphone traffic drawn
rom one the of the 18 volunteers’ usage data, and m is a random in-
eger between 10 to 20 representing the number of activities in the tra-
ectory. To increase the diversity of the dataset, for each activity act i ,
e add a white Gaussian noise [52] to its traffic data. With the pro-
osed method, we form a synthetic dataset with 10,000 app-activity
rajectories, which are used for performance evaluation in the following
ections. 
i  
. Performance evaluation 

To validate the effectiveness of our proposed framework, we con-
ucted extensive experiments on the collected real-world traffic data as
ell as the synthetic traffic data. All experiments were performed on a

ingle machine with Intel Core i5-6600 processors (4 cores / 4 threads),
 GB of memory, and NVIDIA GeForce GTX 1070 GPU. To implement
ur proposed DNN model, we used the PyTorch library [53,54] . 

.1. Performance metrics and baselines 

Similar to the work of [12,13] , we adopt the widely used metrics
or performance evaluation of segmented traffic classification: accuracy,
recision, recall, and F-score. Their definitions can be found in [12] , and
hey are omitted due to page limit. 

In order to confirm the effectiveness of our proposed DNN classifier,
e compare our method with the random forest classifier with fiter-

ng called FRF in [13] , which is the state-of-the-art solution for in-app
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Fig. 9. Performance of in-app activity classifi- 

cation (real-world dataset). 
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ctivity recognition. In addition, we also compare our method with sev-
ral shallow machine learning algorithms including Naive Bayesian (NB)
55] , Adaboost Classifier [56] , and Support Vector Machine (SVM) [57] .

.2. Performance analysis 

.2.1. Performance of the traffic segmentation algorithm 

We first show the performance of the proposed sliding window based
pproach for encrypted traffic segmentation. Two system parameters
ill influence the performance of the algorithm: the cutoff frequency
f low-pass filtering and the threshold of K-L divergence for identifying
plit points. 

Fig. 6 a shows the performance under different cutoff frequencies.
ith the increase of cutoff frequency, the recall approaches 1, which
eans almost all the true split points can be identified by the algorithm.
owever, the precision decreases with the increase of cutoff frequency,
hich means more false split points are misclassified. As a trade-off, we

et the cutoff frequency as 0.015 such that the recall is above 0.8, and
he precision remains above 0.5. 
Fig. 6 b shows the influence of tuning the threshold of K-L diver-
ence. When the threshold is small, the recall is high but the precision
s low. Increasing the threshold will decrease recall and improve the
recision. As a trade-off, we set the threshold as 0.2 such that the recall
s above 0.8, and the precision achieves above 0.6. 

In the task of traffic segmentation, recall is more important than
recision. Higher recall means more split points are correctly identified.
he system tolerates false split points (lower precision), since a false split
oint simply divides the same activity into two segments, which will not
nfluence the identification of app activity. 

.2.2. Performance of app filter 

We test the ability of app filter to recognize the traffic of uninterested
pps. The results are shown in Table 5 . As shown in the table, the pro-
osed app filter works well in recognizing samples from different types
f apps. Specifically, a F-score of 96.62% is achieved in terms of rec-
gnizing interested apps. In the task of recognizing uninterested apps,
 high recall of 93.15% is achieved. Although the precision of this task
s relative low (61.82%), we argue that recall is more important than
recision in this task. High recall means that most uninterested apps are
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Fig. 10. Performance of in-app activity classi- 

fication (synthetic dataset). 
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ejected to avoid false information, and only a small fraction of the tra-
ectory of interested apps are lost, which is tolerable in the system. In
ummary, an overall accuracy of 94.03% is achieved. 

.2.3. Performance of app recognition 

We compare ActiveTracker and baseline methods on pure app recog-
ition. This task only focuses on identifying apps from the traffic seg-
ents without considering the activities. 

Fig. 7 a–c show the experiment results on real-world dataset in terms
f precision, recall and F-score respectively. As shown in these figures,
mong all the classifiers, ActiveTracker achieves the highest precision,
ecall and F-score. As the state-of-the-art method, FRF is only good at
ecognizing QQ. Meanwhile, the other three shallow machine learning
ethods do not perform well on this task, and Naive Bayesian has the
orst performance. In detail, the recall of recognizing Line achieved by
aive Bayesian is only 15.70%. In addition, all the baseline methods are
ot good at recognizing PayPal, Hangouts, Line and Messenger. In con-
rast, our model achieves the highest F-scores (over 93%) on recognizing
ll apps. 
Fig. 8 shows the experimental results on the synthetic dataset. As can
e seen, all the baseline methods perform much worse on the synthetic
ataset. For example, on recognizing QQ, FRF is able to achieve a F-
core of 98.02% on the real-wolrd dataset, while it can only achive a
-score of 75.91% on the synthetic dataset. In contrast, our model still
aintain the highest recognition ability, achieving a F-score of over 90%

or recognizing all apps. 

.2.4. Performance of in-app activity recognition 

We compare ActiveTracker and baseline methods on in-app activity
ecognition. This task focuses on identifying in-app activity from the
raffic segment. 

According to the experimental results on the real-world dataset
hown in Fig. 9 , FRF is expert in identifying video call, voice call, and
ocation sharing, achieving the F-score of 99.19%, 95.65% and 93.23%
espectively. However, FRF is not good at identifying other three activi-
ies. In detail, it only achieves a F-score of 77.64% on identifying transfer
ctivity, a F-score of 81.99% on recognizing picture activity, and a F-
core of 82.77% on identifying text activity. In this task, Naive Bayesian
as the worst performance since it is not able to recognize location ac-
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Fig. 11. Performance of app-activity classification (real-world dataset). 
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ivity. AdaBoost Classifier and SVM are good at recognizing video call,
ut they both do not perform well on recognizing other five activities. In
ontrast, our model is able to recognize all activities with high precision
nd recall. In the task of recognizing voice call and location, although
he performance of FRF is already very high, our model’s performance
s still higher, achieving the F-score of 98.13% and 100% respectively.
his indicates that our proposed model is able to capture more unique
eatures of the traffic generated by different activities compared with
he baseline methods. 

Fig. 10 presents the experimental results on the synthetic dataset.
s presented in the figure, video call is the most recognizable activ-

ty, since all the methods achieves a high precision, a high recall and
 high F-score on video call. However, all the baseline methods have
orse performance on the synthetic dataset. Our proposed classifier
chieves significant higher performance on synthetic dataset compared
o the baselines, which indicates that the proposed model has good
obustness. 

.2.5. Performance of app-activity recognition 

We compare ActiveTracker and baseline methods on recognizing
oth app and activity. This task is more difficult since it needs to identify
he combination of apps and activities in a fine-grained level. 

As the experimental results on real-world dataset shown in Fig. 11 ,
ur model again achieves high precision, recall and F-score for all app-
ctivity classes. In contrast, no baseline methods perform well on this
ask. For example, none of the baseline methods can well recognizing
ending text messages with Line (class 7), sending pictures with Mes-
enger (class 8), sending text messages with Messenger (class 9). This is
ecause the hand-crafted features used in FRF cannot fully reflect the
inor differences between similar activities on different apps, which in

urn indicates that our proposed model indeed has the ability to find
nique patterns for individual app activity. 

Particularly, we pay attention to the ability of recognizing the sen-
itive activities such as money transfer from the encrypted traffic. In
ig. 11 , usage class 1 and 20 correspond to the money transfer activ-
ty using PayPal and WeChat accordingly. According to the figure, our
odel achieves a precision of 92.68% and a recall of 100% when iden-

ifying money transfer in PayPal, and a precision of 95.45% and a recall
f 92.64% when identifying money transfer in WeChat. Among all the
aseline methods, FRF has the best performance on recognzing money
ransfer activity. However, compared with our model, precision and re-
all achieved by FRF are much lower. In detail, it only achieves a preci-
ion of 52.38% and a recall of 55.0% when identifying money transfer
n PayPal, and a precision of 73.77% and a recall of 84.91% when iden-
ifying money transfer in WeChat. The ability of precisely recognizing
ensitive activities could enable malicious attackers to spy on people’s
oney transfer by sniffing an access point in public space and cause a
otential threat to people’s property. 
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Fig. 12. Performance of app-activity classification (synthetic dataset). 
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Table 6 

Overall accuracy (real-world dataset). 

Classifier App Activity App + Activity 

ActiveTracker 96.50 % 96.71 % 95.10 % 

FRF 82.88% 89.47% 79.47% 

Naive Bayesian 64.32% 80.60% 59.55% 

AdaBoost Classifier 65.38% 84.09% 61.52% 

SVM 57.27% 78.71% 54.09% 
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Fig. 12 shows the experimental results on the synthetic dataset. Com-
aring the results presented in Figs. 11 and 12 , we observe that the
aseline models are very sensitive to noises. For example, in Fig. 11 ,
daboost Classifier have good perfomance on recognizing QQ’s video
all (class 12). However, in Fig. 12 , its recall and F-score degrades sig-
ificantly. Meanwhile, our proposed model still performs well on the
ynthetic dataset, which shows great robustness. 

.2.6. Confusion matrix 

We draw the confusion matrices of the tasks of app recognition, in-
pp activity recognition, and app-activity recognition as illustrated in
ig. 13 . As shown in Fig. 13 a, we notice that most apps can be correctly
dentified except Line, where 8% of the traffic segments generated by
ine are falsely classified, and 4% of them are recognized as the traffic
egments generated by Wechat. Analysing the confusion matrix depicted
n Fig. 13 b, we realize that 8% of traffic segments generated by pic-
ure activity are incorrectly classified as the traffic segments generated
y text activity. To find out the cause of misclassifications, we further
nalyse the confusion matrix shown in Fig. 13 c. We notice that most mis-
lassifications appear in recognizing sending picture activity . Specifically,
ost misclassification occurs in recognizing Hangout-picture (class 2),

ine-picture (class 6), Messenger-picture (class 8) and Wechat-picture
class 18). A possible explanation is that within the same app, the traf-
c segments generated by sending picture activity are very similar to
he traffic segments generated by sending text activity. For instance,
ur model classifies some samples from Hangouts-picture (class 2) as
angouts-text (class 3), and identifies some samples from Messenger-
icture (class 8) as Messenger-text (class 9). 

.3. Comparison of overall accuracy 

Table 6 shows the overall accuracy of our model and all the base-
ine methods on the real-world dataset for the three tasks mentioned
bove. As can be seen, compared with all the baseline methods, our
roposed classifier achieves much higher overall accuracy on all three
asks with great improvement. Specifically, FRF achieves an overall
ccuracy of 82.88% on app recognition and an overall accuracy of
9.49% on in-app activity recognition. In addition, the performance of
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Fig. 13. Confusion matrices of three classification tasks (real-world dataset). 

Fig. 14. Time duration accuracy of app trajec- 

tory recognition (real-world dataset). 

Table 7 

Overall accuracy (synthetic dataset). 

Classifier App Activity App + Activity 

ActiveTracker 94.54% 95.66% 93.20% 

FRF 66.97% 83.71% 63.33% 

Naive Bayesian 54.17% 75.76% 50.83% 

AdaBoost Classifier 50.00% 79.02% 45.68% 

SVM 59.55% 78.56% 54.92% 
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ther three baseline methods is even worse. For example, SVM only
chieves an overall accuracy of 57.27% on app recognition task. On
pp-activity recognition task, the overall accuracy achieved by the base-
ine method is even lower (79.47% for FRF, 59.55% for Naive Bayesian,
1.52% for AdaBoost Classifier and 54.09% for SVM), which indicates
hat recognizing both app and activity is indeed a more complicated
nd challenging task. In contrast, the proposed ActiveTracker achieves
 high overall accuracy on both app recognition task (96.50%) and
n-app activity recognition task (96.71%). For the most challenging
pp-activity recognition task, our model can still achieve an overall
ccuracy of 95.10%, only slightly lower than the accuracy achieved
n other two task. This illustrates that ActiveTracker has the abil-
ty to differentiate the similar activities on different apps with high
ccuracy. 

As presented in Table 7 , the experimental results on the synthetic
ataset show that the accuracy achieved by all the baseline methods
s much lower than that on the real-world dataset. In contrast, for all
hree recognition tasks, the overall accuracy achieved by our model is
nly slightly lower than the accuracy achieved on the real-world dataset.
his shows that our model works well in a large-scale synthetic dataset
ith noise and diverse activities. 

.4. Performance of app trajectory recognition 

Last we test the performance of recognizing continuous app trajec-
ory from an encrypted traffic stream using the proposed approach. Time
uration accuracy (TDA) is adopted as the evaluation metric which eval-
ates the total time durations that are correctly labeled. TDA is formally
ormulated as follows: 

 𝐷𝐴 = 

𝑙𝑒𝑛𝑔𝑡ℎ ( 𝐹 ∩ 𝐹 ) 
𝑙𝑒𝑛𝑔𝑡ℎ ( 𝐹 ) 

(6)

here length ( F ) denotes the duration time of the whole traffic stream,
nd 𝑙𝑒𝑛𝑔𝑡ℎ ( 𝐹 ∩ 𝐹 ) captures the time durations (segments) in which the
pp activity is correctly identified. The results are shown in Fig. 14 . As
an be seen, a high time duration accuracy is achieved for most app
ctivities. Specifically, video calls (class 10, 12, 15, 21) and voice calls
class 13, 22) can be easily uncovered with TDA of over 90%. As for
ncovering money transfer activity, our framework achieves a TDA of
8.46% on Paypal, and a TDA of 90.09% on Wechat, which indicates
hat our framework indeed has the ability to uncover the sensitive ac-
ivity such as money transfer over an encrypted traffic stream. Overall,
ur mothod achieves a TDA of 79.65% on app trajectory recognition. 

.5. Scalability of DNN model 

Last we test the scalability of our proposed DNN model. The goal of
his experiment is to check whether significant performance degradation
ill occur when more and more apps are added into the model. We rerun

he experiments in 6.2.3 (app recognition), 6.2.4 (activity recognition),
.2.5 (app activity recognition) with different number of apps (varying
rom 2 apps to 7 apps) and test the overall accuracy of each task. 

As presented in Fig. 15 , no significant performance degradation is
bserved when the number of apps increases from 2 to 7. In detail, when
ecognizing both app and activity with only 2 apps, our DNN model is
ble to achieve a very high overall accuracy of 97.06%. For the same
ecognition task with 7 apps, the overall accuracy achieved by our DNN
odel is still high (95.10%). We can expect that the model will maintain

he same level of accuracy if the number of apps are small, but we cannot
romise the performance on a large number of apps (e.g., 100 apps).
heoretically the accuracy will decrease since a large number of apps
ill increase the difficulty of classification. Note that the attacker will
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Fig. 15. Scalability of DNN model (real-world dataset). 
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ainly focus on attacking a few number of apps, so the proposed model
orks well on revealing activities from a small number of apps. 

. Conclusion 

In this paper, we propose ActiveTracker , a framework to recognize
pp trajectory over encrypted Internet traffic streams. First, the incom-
ng Internet traffic of mobile apps is segmented into several single-
ctivity subsequences by a sliding window based approach. Then, each
raffic segment is represented by a temporal-spacial traffic matrix and a
raffic spectrum vector. Using the normalized data as input, we propose
 deep neural network (DNN) model to combine the features from differ-
nt domains for app trajectory recognition. Extensive experiments based
n real-world encrypted mobile traffic as well as the synthetic traffic
how that the proposed framework achieves high accuracy in app tra-
ectory recognition. Our work will rise people’s attention on the privacy
rotection of mobile app communications. 
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