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Abstract—Despite the increasing popularity of mobile appli-
cations and the widespread adoption of encryption techniques,
mobile devices are still susceptible to security and privacy
risks. In this paper, we propose ActiveTracker, a new type
of sniffing attack that can reveal the fine-grained trajectory
of user’s mobile app usage from a sniffed encrypted Internet
traffic stream. It firstly adopts a sliding window based approach
to divide the encrypted traffic stream into a sequence of
segments corresponding to different app activities. Then each
traffic segment is represented by a normalized temporal-
spacial traffic matrix and a traffic spectrum vector. Based on
the normalized representation, a deep neural network (DNN)
classification algorithm is developed to recognize the crucial
activities conducted with different apps by the user. We show by
extensive experiments on real-world app usage traffic collected
from volunteers that the proposed approach achieves up to 78.5%
accuracy in recognizing app trajectory over encrypted traffic
streams.

Index Terms—Time Series Segmentation; Encrypted Internet
Traffic; Mobile App and Service Classification.

I. INTRODUCTION

The popularity of mobile applications (apps) is increasing
dramatically in the past few years. People frequently use
mobile apps for social interaction, online shopping, gaming,
route navigation, enjoying music, watching videos, etc.
According to the report [1], in the year of 2017, mobile
apps accounted for 2/3 of worldwide Internet traffic and will
continue to grow rapidly.

Due to the broadcast nature of wireless communications,
mobile devices are susceptible to security and privacy risks.
Malicious attacks such as sniffing may reveal users’ sensitive
information [2][3][4]. For example, the traffic classification
techniques [5][6][7][8], by inspecting the headers (e.g.,
protocol type, IP address, port, etc) of the IP packets and the
payloads, can infer the application types and the corresponding
protocols (e.g., email, news, VoIP, etc). To enhance security,
encryption techniques have been applied in different levels of
the communication process. For example, the Transport Layer
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Fig. 1. An Example of App Trajectory Recognition.

Security (TLS) protocol has been widely used by many mobile
apps to encrypt the application data to avoid the inspection of
payload. The Internet Protocol Security (IPsec) protocol can
be used to encrypt data flows between a pair of hosts. The
Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access
(WPA) standard have been widely applied in wireless local
area networks (WLANs) to prevent unauthorized access to the
network. However, the recent researches [9][10][11] showed
that, the information of mobile app usage can be inferred
by examining the temporal-spacial patterns of the encrypted
Internet traffic packets.

The works of app fingerprinting [12][13][14][15][16]
tend to establish unique features for app distinction. The
features are extracted from the traffic level, code level, and
system level. For example, NetworkProfiler [12] automatically
generated network profiles for identifying Android apps
according to the HTTP headers in the traffic. AppPrint [13]
used parts of the HTTP URLs or strings from HTTP headers
as a fingerprint. AppDNA [17] inspected the function-call-
graph to form app fingerprint in the code-level. POWERFUL
[16] fingerprinted mobile apps by analyzing their power
consumption patterns in the system-level.

Recently, several works focus on in-app activity classifi-
cation that aims to recognize the usage of different services
within a particular app such as Whatsapp [9][10][18]. Fu et
al. proposed in-app activity classification by jointly modeling
user behavioral patterns, network traffic characteristics, and
temporal dependencies. In their follow-up work [10], they
improved the processing speed of this classifier by selecting
most discriminative traffic patterns to meet the online
efficiency requirement. A multi-label multi-view logistic
classification method was developed in [18] to overcome the
pain of mixed-usage traffic flows. However, the existing works
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focus on identifying the activity within a particular app, and
they lack the ability to recognize both app and in-app activity
in a fine-grained level.

In this paper, we address a more challenging task:
uncovering the trajectory of user’s mobile app usage from
a continuous encrypted Internet traffic stream. Specifically,
we focus on the app trajectory recognition problem: inferring
which apps are used to conduct what activities by analysing
the encrypted Internet traffic stream sniffed from a user. Fig.
1 illustrates an example that a malicious attacker sniffs the
encrypted traffic of a user via a public access point. As shown
in the figure, there is a clear pattern (e.g., the packet size,
the packet interval, etc) in the encrypted traffic stream when
the user conducts different activities with different apps. By
exploring the patterns, a well-designed algorithm can uncover
the trajectory of mobile app usage in a fine-grained level. In
other words, the described technology can be considered as
a new form of attack: an adversary can sniff the encrypted
traffic and infer user’s sensitive information such as “sending
pictures with Skype and transferring money with PayPal”.

The conventional works of app fingerprinting and in-
app activity classification cannot solve the app trajectory
recognition problem directly. The reason and technical
challenges are explained below. First, the conventional
approaches were designed for recognizing either app or
activity (service), but not both. The combination of apps
and activities forms a more complicated classification task,
which yields low recognition accuracy with the conventional
approaches (as shown in the performance analysis in section
V). Second, the conventional approaches used hand-crafted
features for classification. The extraction of features heavily
relies on human experience, and the hand-crafted features
are not thorough enough to differentiate similar activities
on different apps (e.g., text messaging with Skype and text
messaging with WeChat), which leads to poor performance as
shown in section V. Third, to uncover the app trajectory from
a continuous encrypted traffic stream, it needs a method to
correctly partition the traffic stream into segments representing
different user activities, which has not been well studied in the
past.

To address these challenges, we propose ActiveTracker, a
novel framework to uncover the trajectory of app activities
from the encrypted Internet traffic stream. It first adopts a
sliding window based approach to divide the traffic stream
into a sequence of segments, where each segment corresponds
to an app activity. The traffic segment is then normalized
and represented by a temporal-spacial traffic matrix and a
traffic spectrum vector. Using the normalized data as input, a
deep neural network (DNN) classifier is proposed for activity
recognition. Combining the recognition results of the sequence
of traffic segments, the trajectory of app activities can be
uncovered, which may lead to the leakage of sensitive personal
information of the mobile users.

Tabel I highlights the differences of ActiveTracker and
the existing works on app fingerprinting and in-app activity
classification. The main results and contributions of this paper

TABLE I
COMPARISON OF ACTIVETRACKER AND THE EXISTING WORKS.

App
Recog-
nition

Activity
Recog-
nition

Trajectory
Recog-
nition

Feature Classifier

App
Finger-
printing

X × × hand-
crafted

SVM,
Random
Forest,

etc.
In-app

Activity
Classifi-
cation

× X × hand-
crafted

SVM,
Random
Forest,

etc.
Active
Tracker

X X X automatic Deep
learning

are summarized as follows.
• We design a novel sliding window based approach for

encrypted traffic stream segmentation, which is able to
accurately partition an encrypted Internet traffic stream
into multiple single-activity sub-streams.

• We propose a DNN-based classifier for activity recogni-
tion from traffic segments. The proposed classifier uses
convolutional neural network to extract features from
the traffic segmentation automatically, and achieves high
accuracy in activity recognition.

• To the best of our knowledge, we are the first to solve
the problem of uncovering the trajectory of app activities
over encrypted Internet traffic streams.

• We conduct extensive experiments based on real-world
Internet traffic collected from volunteers. The results
show that the proposed approach achieves up to 78.5%
accuracy in uncovering app activity trajectory from a long
traffic stream. Our work will draw people’s attention to
privacy protection of mobile app communications.

II. PROBLEM FORMULATION

A. Adversary Model

We consider the scenario that an adversary aims to uncover
the trajectory of app activities of a mobile user, as illustrated
in Fig. 1. Since wireless communications are broadcast, the
attacker can sniff the encrypted Internet traffic of the target
user on the same WLAN to collect data streams for further
analysis. A number of sniffing tools such as Wireshark or
aircrack-ng can be used to collect the wireless traffic between
hosts and the access point. Such attack can be applied to most
encrypted wireless networks such as the airport’s WiFi and the
coffee-shops’ networks.

B. Definitions and Assumptions

Here we provide some definitions and assumptions used in
the rest of this paper.

Definition 1 (Encrypted Internet Traffic Stream): An
encrypted Internet traffic stream is defined as a sequence of
packets F = {p1, p2, · · · , pN}, where pi (1 ≤ i ≤ N ) is
the information of the i-th observed packet represented by
pi = 〈Ti, Li〉, where Ti is the timestamp of the packet and Li

is the length of the packet.
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We assume the adversary can observe only very limited
information from the encrypted packet, i.e., only the timestamp
and packet length are observable to the attacker.

The length of an Internet traffic stream is defined as the time
interval between the first and the last packet, i.e., length(F ) =
TN − T1.

Definition 2 (Encrypted Traffic Segment): An encrypted
traffic segment is defined as a continuous subsequence of an
encrypted Internet traffic stream. For example, F (Ti, Tj) =
{pi, pi+1, · · · , pj} is an encrypted traffic segment of F .

Normally, an encrypted traffic segment corresponds to some
app activity of the user. We assume that the activity should
last for at least 15 seconds. Therefore the length of F (Ti, Tj)
should be longer than 15 seconds. If the length of F (Ti, Tj)
is too short, there won’t be enough statistical information for
activity recognition.

Definition 3 (app activity recognition): The app ac-
tivity recognition task is to find a mapping from an
encrypted traffic segment to the app activity: F (Ti, Tj) →
〈app, activity〉, where the app activity is represented by a
tuple 〈app, activity〉. The task aims to recognize both the
name of the app and the activity conducted with it.

Definition 4 (app trajectory recognition): The app
trajectory recognition task tends to map an encrypted
Internet traffic stream F to a sequence of app activities: F →
〈T1, app1, activity1〉, 〈T2, app2, activity2〉, · · · , 〈TK , appK , activityK〉.

In other words, it aims to uncover which app is used for what
activity at some moment by analysing the encrypted Internet
traffic stream.

C. Problem Statement

Given a sniffed encrypted Internet traffic stream, the goal
of the attacker is to uncover the trajectory of the app activities
of the stream. To achieve this goal, we can first partition
the traffic stream into segments, then recognize the app
activity of each segment using a classification algorithm, and
finally combine the results to form the app usage trajectory.
Specifically, the app usage trajectory recognition problem can
be solved by considering the following sub-problems:

1) Encrypted Internet Traffic Stream Segmentation: Given
an encrypted Internet traffic stream, the objective of the first
sub-problem is to find a set of split points to partition the
stream into a sequence of encrypted traffic segments, such that
the packets within a segment are generated from the same app
activity usage.

2) Encrypted Traffic Segment Classification: Given an
encrypted traffic segments, the objective of the second sub-
problem is to identify the name of the app as well as the
in-app activity from the traffic.

Next, we will propose an approach to uncover app usage
trajectory from the encrypted Internet traffic stream based on
Deep Neural Network (DNN).

III. APP TRAJECTORY RECOGNITION BASED ON DNN

In this section, we first give a brief overview of app
trajectory recognition based on DNN. Then, we in detail

introduce three major components of our framework: a novel
sliding window based approach for traffic segmentation, a
method for data representation, and the proposed DNN
classifier for encrypted traffic segment classification.

Fig. 2 shows our solution framework, which consists of
three major components.
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Fig. 2. The Solution Framework.

A. Solution Framework

1) Traffic Segmentation: Given a continuous encrypted
Internet traffic stream, the first step is to partition the stream
into segments. We adopt a sliding window based approach to
divide the stream into a sequence of segments, where each
segment corresponds to an app activity.

2) Data Representation: Given the traffic segments, we
transform them into normalized data as the input of the DNN
classifier. Specifically, we represent each traffic segment by a
temporal-spacial traffic matrix and a traffic spectrum vector.

3) Segment Classification: Using the normalized data as
input, we propose a DNN model for activity recognition.
The DNN model uses a 2D convolutional neural network
(CNN) and a 1D CNN to extract the features from different
domains and combine these features to recognize the activity
and uncover the app usage trajectory.

The three components are presented in detail below.

B. Sliding Window based Traffic Segmentation

We propose a novel sliding window based approach for
traffic segmentation. Given a continuous encrypted traffic
stream, the task of traffic segmentation is to find the “split
points” that partition the stream into segments corresponding
to different app activities. Intuitively, different activities
present different statistical patterns in their traffic regarding
the packet lengths and packet intervals. Based on the intuition,
we devise a sliding window based approach to search the split
points that divide the traffic stream into segments with high
statistical difference in their packet distributions.

The proposed approach includes four steps: sliding window
formulation, similarity curve generation, low-pass filtering,
and split points identification, which are explained below.

1) Sliding Window Formulation: The sliding window
approach is illustrated in Fig. 3. We use a sliding window
with length L to include a set of packets from the traffic
stream. The middle point of the window divides the set of
packets within the window into two parts: the left part Sl and
the right part Sr. We compute the similarity of the packet
statistical characteristics of the two parts: Sim(Sl, Sr). If Sl

and Sr belong to the traffic of different activities, the similarity
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between them should be low. By moving the sliding window
and observing the change of similarities, the split points can
be identified as introduced below.

2) Similarity Curve Generation: To assess the similarity of
the packet statistical characteristics in Sl and Sr, we adopt the
Kullback-Leibler (K-L) divergence [19] as the distance metric
for the two packet sets. The K-L divergence, also known as
relative entropy, is formally formulated as follows:

DKL(Sl||Sr) =
∑
i

Sl(i)log
Sl(i)

Sr(i)
, (1)

where Sl(i) and Sr(i) are the discrete probability distributions
of the left and right parts accordingly. K-L divergence is
the expectation of the logarithmic difference between the
probability distributions Sl(i) and Sr(i). If the probability
distributions Sl(i) and Sr(i) are exactly the same, the K-L
divergence equals 0. The larger K-L divergence value means
the more difference between them.

Sliding Window
Split Points

Similarity Curve

After Filtering

False Split Points

Fig. 3. Illustration of the Sliding Window Approach.

In practice, we consider the similarity between Sl(i) and
Sr(i) regarding their distributions on packet length and
interval, and the similarity can be computed by the mean of
their K-L divergences:

Sim(Sl, Sr) =
Dsize

KL (Sl||Sr) +Dinterval
KL (Sl||Sr)

2
(2)

We move the sliding window step by step along the
encrypted traffic stream, and compute the similarities on each
point, which forms a similarity curve as shown in Fig. 3.
According to the figure, when the sliding window is within
the same activity, the curve is flat. When the sliding window
moves across different activities, the curve first ascends and
then descends. The peak of the curve appears around the split
point of the two activities, since the maximum dissimilarity
between the two distributions should occur at the split point
in theory. Such property can be employed to identify the split
points in the traffic stream, which will be introduced below.

3) Low-pass filtering: Due to the randomness of the data
packets, the similarity curve is not smooth and it fluctuates
as illustrated in Fig. 3. It is hard to identify the split
points by searching the peaks along the curve. To reduce
the fluctuation and smooth the curve, we propose a low-pass
filtering approach.

In signal processing, a low-pass filter allows through signals
with frequencies lower than a certain cutoff frequency and
attenuates signals with frequencies higher than the cutoff
frequency. Low-pass filter is widely used in signal systems
to remove high frequency noise.

In our work, we adopt a cutoff frequency of 0.015Hz, since
an app activity should last for at least for 15 seconds.

4) Split points identification: After low-pass filtering, the
similarity curve becomes smooth as illustrated in Fig. 3.
Apparently the split points correspond to the peaks of the
similarity curve. There are still some local peaks (e.g., the false
split points illustrated in Fig. 3) that could cause confusion.
However, such peaks are small, and most of their values are
less than 0.2, which means that the traffic streams around such
small peaks are similar and they should not be considered
as split points. This inspires us a heuristic approach for
split points identification: we first detect the extreme points
(maximum) on the similarity curve, and then compare the
detected points with a predefined threshold (e.g., 0.2). If
the similarity value on the extreme point is greater than the
threshold, it is identified as a split point.

Using the above heuristics, we can obtain a set of split points
which partition the continuous traffic stream into segments.

Algorithm 1 summarizes the proposed sliding window based
approach for encrypted traffic segmentation.

Algorithm 1 Sliding Window based Traffic Segmentation
Input:

An encrypted Internet Traffic Stream F =
{p1, p2, · · · , pN}.

Output:
Split points P = {tj , j = 1, 2, · · · ,M} such that the
packets between two adjacent split points are generated
by a single app activity.

1: initial P = ∅ and C = ∅;
2: initial the length of time window L = 10s, and set the

sliding window at the beginning of the traffic stream
3: repeat
4: compute the similarity s = Sim(Sl, Sr);
5: add s to C;
6: move the sliding window rightwards 0.1 second;
7: until no packet is included by the sliding window;
8: generate the similarity curve FC using elements in C;
9: feed FC into a low-pass filter, obtaining a smooth

similarity curve SC;
10: identify the split points in SC and add them to P ;
11: return P ;

C. Data Representation

After traffic segmentation, we get a set of traffic segments
with different sizes. To obtain a normalized representation
of each segment as the input of our proposed classifier, we
propose a data representation method to normalize the traffic
segments.
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Since a user activity is assumed to be longer than 15
seconds, the segments with length less than 15 seconds will
be discarded as they are unrecognizable. For each segment,
we extract 15-second traffic from the middle of it. We then
represent the extracted traffic stream with a temporal-spacial
traffic matrix and a traffic spectrum vector.

The temporal-spacial traffic matrix M is a 150 × 150 2D
matrix, where each element Mij (1 ≤ i ≤ 150, 1 ≤ j ≤ 150)
corresponds to the number of packets which arrive between
(i/10 − 0.1) second and (i/10) second and whose lengths
are between (j ∗ 100 − 99) bytes and (j ∗ 100) bytes. The
quantification of M tends to capture the temporal-spacial
correlations of the encrypted traffic stream.

The traffic spectrum vector V is computed as follows. We
regard the packet length as a signal of arrival time, and regard
each packet as a sampling on this function. Obviously, these
samplings are generated with unstable time intervals. To obtain
the traffic spectrum, we first conduct Hermite interpolation
[20] to obtain equally spaced (0.01 second) data sequence.
Then, by using Discrete-Time Fourier Transform (DTFT)
[21], we can obtain a vector of length 1500 which contains
frequency domain features of the extracted traffic stream.

D. Deep Neural Network Classifier

Inspired by the fact that 2D CNN is expert in image
recognition and that images are usually represented by
matrices, we believe that 2D CNN can also be ultilized to
extract features of a traffic stream from its temporal-spacial
traffic matrix. In addition, since 1D CNN is good at extracting
features from sequential data, we can also use it to extract
features from traffic spectrum vector.

Similar to other deep learning models, feature extraction
is vital in CNN. Specifically, features extracted in shallower
layers of the CNN will be fed to the successive convolutional
layers in order to extract more abstract features. Thus,
compared with hand-crafted features, the features extracted by
CNN are more comprehensive, which would be a great help
to differentiating similar activities on different apps.

Considering the above mentioned advantages of CNN, we
propose a deep neural network (DNN) classifier for app
activity identification. As illustrated in Fig. 4, the proposed
architecture consists of a 2D CNN and a 1D CNN. The
temporal-spacial traffic matrix respectively goes through three
convolutional layers and three max pooling layers, so does the
traffic spectrum vector. Then, the features extracted by both 1D
CNN and 2D CNN are concatenated into a feature vector. This
feature vector then goes through a fully-connected layer. The
fully-connected layer is able to decide the significance of each
feature and assign high weights to important features. Finally,
the output of the fully-connected layer is fed into a softmax
layer, and the softmax layer outputs a probability distribution
of app usage. The usage with the highest probability are
chosen as the predicted usage.

Table II describes the main parameters of each layer of the
proposed DNN classifier.

Convolutional Layer 1

Convolutional Layer 2

Convolutional Layer 3

Max Pooling Layer 1

Max Pooling Layer 2

Max Pooling Layer 3

Flatten & Concatenation

Fully Connected Layer

Softmax Layer

Output

Traffic Spectrum Temporal-Spacial Matrix

Input

Fig. 4. The Structure of the DNN Classifier.

TABLE II
THE CONFIGURATION OF DNN CLASSIFIER.

Network Configuration
Input (1*1500, frequency domain) Input (150*150, time domain)

Conv (filter=1*9, channel=2) Conv (filter=3*3, channel=2)
Max Pooling Max Pooling

Conv (filter=1*9, channel=4) Conv (filter=3*3, channel=4)
Max Pooling Max Pooling

Conv (filter=1*9, channel=8) Conv (filter=3*3, channel=8)
Max Pooling Max Pooling

Fully Connected
Softmax

IV. DATA COLLECTION

To evaluate the performance of our framework, we collect
real-world data of encrypted Internet traffic from 7 popular
mobile apps: Paypal, Hangouts, Line, Messenger, QQ, Skype
and Wechat. We use these apps to conduct different activities
including location (sharing the current location of the user),
picture (posting a photo), text (sending text to a friend), video
call, voice call, and money transfer. The apps and activities
for data collection are summarized in Table III.

To collect traffic flow data, we recruited 3 volunteers who
are required to use these apps with our specially configured
handsets. Specifically, we use Samsung Galaxy S7 and Huawei
G9 Youth as our experimental handsets. In addition, we set
up a firewall on the handset which grants Internet permission
to the target apps and blocks the traffic from other apps. The
smartphones are connected to a virtual Wi-Fi access point (AP)
operated by a laptop. A well-known sniffing tool, WireShark,
is run on the laptop to crawl the packet information of the
smartphones from the AP.
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TABLE III
THE INTERESTED APP AND ACTIVITY TYPES.

# Location Picture Text Video Call Voice Call Transfer

PayPal X
Hangouts X X X X
Line X X
Messenger X X X X
QQ X X
Skype X X X
Wechat X X X X X X

During data collection, the volunteer conducted a particular
activity with an app for a duration, and labeled the activity in
the dataset. For example, a volunteer may use WeChat to text
with others in the first hour, and then use Skype to make a
video call in the next hour. Their activities and time durations
are logged as ground truth. The collected traffic is labeled
to form a training set for model learning and a test set for
performance verification.

To further ensure the robustness of our framework, besides
collecting traffic data in our lab, we also collect data under
different network environments including in the library and
student dormitory.

The basic statistics of the collected app activity dataset are
illustrated in Tabel IV.

TABLE IV
STATISTICS OF THE COLLECTED INTERNET TRAFFIC.

# app Activity Rec. Packets Traffic Tra/min
1 PayPal transfer 182 33.6K 12.9M 231K
2 Hangouts picture 265 1065.9K 785.1M 3.39M
3 Hangouts text 468 71.8K 18.38M 63.2K
4 Hangouts video call 162 257.1K 123.4M 3.04M
5 Hangouts voice call 162 90K 30.76M 777.1K
6 Line picture 400 307.4K 200.7M 845.3K
7 Line text 340 32.7K 5.42M 18.68K
8 Messenger picture 395 194.2K 118.3M 6.5M
9 Messenger text 493 79.6K 15.24M 62.78K
10 Messenger video call 208 441.5K 219.4M 4.2M
11 Messenger voice call 146 73.7K 17.47M 461.1K
12 QQ video call 269 903K 584.8M 8.69M
13 QQ voice call 262 219.3K 37.86M 564.59K
14 Skype picture 296 102.8K 54.72M 397.4K
15 Skype video call 196 691.8K 441.9M 9.01M
16 Skype voice call 164 239.8K 40.47M 0.99M
17 Wechat location 673 276.3K 156.3M 777.4K
18 Wechat picture 446 475.8K 306.65M 852.7K
19 Wechat text 617 41.7K 8.11M 23.04K
20 Wechat transfer 142 19.6K 6.69M 47.67K
21 Wechat video call 243 690.5K 140.5M 2.3M
22 Wechat voice call 301 514.9K 85.83M 1.13M

V. PERFORMANCE EVALUATION

To validate the effectiveness of our proposed framework,
we conducted extensive experiments on the collected traffic
data. All experiments were performed on a single machine
with Intel Core i7-7700 processors (4 cores / 8 threads), 8 GB
of memory, and NVIDIA GeForce GTX 1050 GPU.

A. Performance Metrics and Baselines
Similar to the work of [9][10], we adopt the widely

used metrics for performance evaluation of segmented traffic

classification: accuracy, precision, recall, and f-score. Their
definitions can be found in [22], and they are omitted due to
page limit.

In order to confirm the effectiveness of our proposed DNN
classifier, we compare our classifier with the random forest
classifier with fitering called FRF in [10], which is the state-
of-art approach for in-app activity recognition.
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(a) Influence of Cutoff Frequency.
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(b) Influence of Threshold.

Fig. 5. The Performance of Traffic Segmentation under Different System
Parameters.

B. Performance Analysis

1) Performance of the Traffic Segmentation Algorithm: We
first show the performance of the proposed sliding window
based traffic segmentation algorithm. Two system parameters
will influence the performance of the algorithm: the cutoff
frequency of low-pass filtering and the threshold of K-L
divergence for identifying split points.

Fig. 5(a) shows the performance under different cutoff
frequencies. With the increase of cutoff frequency, the recall
approaches 1, which means almost all split points can be
identified by the algorithm. However, the precision decreases
with the increase of cutoff frequency, which means more false
split points are included. As a trade-off, we set the cutoff
frequency as 0.015 such that the recall is above 0.8, and the
precision remains above 0.5.

Fig. 5(b) shows the influence of tuning the threshold of K-
L divergence. When the threshold is small, the recall is high
but the precision is low. Increasing the threshold will decrease
recall and improve the precision. As a trade-off, we set the
threshold as 0.2 such that the recall is above 0.8, and the
precision achieves above 0.6.

In the task of traffic segmentation, recall is more important
than precision. Higher recall means more split points are
correctly identified. The system tolerates false split points
(lower precision), since a false split point simply divides the
same activity into two segments, which will not influence the
identification of app usage.

2) Performance of App Recognition: We compare Active-
Tracker and FRF on pure app recognition. This task only
focuses on identifying app from the traffic segment without
considering the activities.

Fig. 6(a), 6(b), and 6(c) show the experiment results in
terms of precision, recall and f-score respectively. As shown
in these figures, our model achieves high precision, recall and
f-score on recognizing all apps, while FRF is only good at
recognizing QQ app. Both models have the worst performance
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Fig. 6. Performance of App Classification.
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Fig. 7. Performance of In-app Activity Classification.

on recognizing Line app among all seven apps. This is because
some traffic streams generated by the Line app is very similar
to the traffic generated by the Wechat app. However, under
such circumstances, our model still achives a relatively high f-
score of 91.03% on recognizing Line, while FRF only achives
a low f-score of 41.30%.

3) Performance of In-app Activity Recognition: We com-
pare ActiveTracker and FRF on in-app activity recognition.
This task focuses on identifying in-app activity from the traffic
segment.

According to the experiment results shown in Fig. 7, FRF is
expert in identifying video call and voice call, achieving the f-
score of 98.3% and 97.3% respectively. However, FRF is not
good at identifying other activities. For example, FRF only
achieves a f-score of 57.1% on identifying transfer activity,
and a f-score of 62.4% on recognizing text activity. In contrast,
our model is able to recognize all activities with high precision
and recall. In the task of recognizing video call and voice
call, although the performance of FRF is already very high,
our model’s performance is still higher, achieving the f-score
of 99.48% and 99.28% respectively. This indicates that our
proposed model is able to capture more unique features of
the traffic generated by different activities compared with the
baseline method.

4) Performance of App-activity Recognition: We compare
ActiveTracker and FRF on recognizing both app and activity.
This task is more difficult since it needs to identify the
combination of apps and activities in a fine-grained level.

As shown in Fig. 8, our model again achieves high precision,
recall and f-score for all app-activity classes. In contrast, the
performance of FRF is much worse than that of our model.
Specifically, it is hard for FRF to recognize text activity and
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Fig. 8. Performance of app-Activity Classification.

picture activity. This is because the hand-crafted features used
in FRF cannot fully reflect the minor differences between
similar activities on different apps, which in turn indicates
that our proposed model indeed has the ability to find unique
patterns for each app activity.

Particularly, we pay attention to the ability of recognizing
the sensitive activities such as money transfer from the
encrypted traffic. In Fig. 8, usage class 1 and 20 correspond
to the money transfer activity using PayPal and WeChat
accordingly. According to the figure, our model achieves a
precision of 100% and a recall of 100% when identifying
money transfer in PayPal, and a precision of 93% and a
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recall of 100% when identifying money transfer in WeChat.
In contrast, FRF has much lower precision and recall in
recognizing money transfer, which is about 68.3% and 70.0%
in PayPal, and 40.0% and 40.0% in WeChat. The ability
of precisely recognizing sensitive activities could enable
malicious attackers to spy people’s money transfer by sniffing
an access point in public space and cause a potential threat to
people’s property.

C. Comparison of Overall Accuracy

Table V shows the overall accuracy of our model and FRF
on the three tasks mentioned above. As can be seen, compared
with FRF, our proposed classifier achieves much higher
overall accuracy on all three tasks with great improvement.
Specifically, FRF only achieves an overall accuracy of 74.32%
on app recognition and an overall accuracy of 81.25% on in-
app activity recognition. On app-activity recognition task, the
overall accuracy achieved by FRF is even lower (69.55%),
which indeed indicates that recognizing both app and activity
is a more complicated and challenging task. In contrast,
the proposed ActiveTracker achieves a high overall accuracy
on both app recognition task (97.10%) and in-app activity
recognition task (97.62%). For the most challenging app-
activity recognition task, our model can still achieve an overall
accuracy of 95.28%, only slightly lower than the accuracy
achieved in other two task. This illustrates that ActiveTracker
has the ability to differentiate the similar activities on different
apps with high accuracy.

TABLE V
OVERALL ACCURACY.

Classifier App Activity App+Activity
ActiveTracker 97.10% 96.62% 95.28%
FRF 74.32% 81.25% 69.55%

D. Performance of App Trajectory Recognition

Last we test the performance of uncovering continuous
trajectory of app activities from an encrypted traffic stream
using the proposed approach. Time Duration Accuracy (TDA)
is adopted as the evaluation metric which evaluates the total
time durations that are correctly labeled. TDA is formally
formulated as follows:

TDA =
T (F ∩ F̂ )

T (F )
(3)

where T (F ) denotes the duration time of the whole traffic
stream, and T (F ∩ F̂ ) captures the time durations (segments)
in which the app activity is correctly identified. The results are
shown in Fig. 9. As can be seen, a high time duration accuracy
is achieved for most app activities. Specifically, video calls and
voice calls can be easily uncovered with TDA approaching to
1. As for uncovering money transfer activity, our framework
achieves a TDA of 86.32% on Paypal, and a TDA of 73.21%
on Wechat, which indicates that our framework indeed has
the ability to uncover the money transfer activity over a long
encrypted traffic stream.
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Fig. 9. Time Duration Accuracy.

VI. RELATED WORK

We summarize the related work of three categories: Internet
traffic classification, app fingerprinting, and in-app service
classification.

A. Internet Traffic Classification

The conventional traffic classification focused on distin-
guishing the traffic generated by different Internet protocols.
Bissias et al. proposed to gather profiles of specific websites
from encrypted HTTP response streams, and use these profiles
to infer the site being accessed of a trace of web traffic
[23]. Draper-Gil et al. proposed a flow-based classification
method to characterize encrypted and VPN traffic using only
time-related features [24]. Wei et al. designed an end-to-end
Internet traffic classifier based on one-dimensional convolution
neural networks. Their proposed classifier identifies traffic
flows by extracting patterns from the first 784 bytes of each
flow [22]. Lotfollahi et al. [25] proposed Deep Packet, which
embeds stacked autoencoder and convolutional neural network
to identify traffic types and end-user apps.

B. App Fingerprinting

App fingerprinting aims to extract unique features from
traffic level, code level, and system level to identify the
app usage. Dai et al. proposed a fingerprint-based technique,
called NetworkProfiler [12], which automatically generates
network profiles for identifying Android apps in the HTTP
traffic. Specifically, they chose the combination of HOST
field within the HTTP header and invariant patterns within
the HTTP header as the fingerprint of an app. Xu et al.
built a system called Flow Recognition (FLOWR) [26], which
learns the apps’ distinguishing features via traffic analysis. It
focuses on key-value pairs in HTTP headers and identifies
the pairs suitable for app signatures. Miskovic et al. proposed
AppPrint [13], a system that uses parts of the HTTP URLs or
strings from HTTP headers, which are unique to the app as a
fingerprint. [15] generates conjunctive rules from HTTP flow
header to identify app. [27] transforms app identification into
an information retrieval problem, and uses lexical similarity
as a metric for classification task. However, the works above
assume that mobile apps run over HTTP, and thus their
methods are not applicable over encrytped Internet traffic.
To solve the problem of identifying app in encrypted traffic
streams, [14][28][29] adopts machine learning techniques, and
[30][31] try to improve the classification accuracy through
multi-classification.
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C. In-app Service Classification

In-app service classification aims to recognize the usage of
different service within a particular app such as Whatsapp.
Xu et al. identified traffic from distinct apps based on HTTP
signature using anonymized network measurements from a
tier-1 cellular carrier [32]. Fu et al. developed CUMMA [9],
which classifies in-app service usages by jointly modeling
user behavioral patterns, network traffic characteristics, and
temporal dependencies. In their follow-up work [10], they
improve the processing speed of this classifier by selecting
most discriminative traffic patterns.

Different from existing works, our work addresses the
problem of uncovering the trajectory of app activities. To the
best of our knowledge, our work is the first to apply deep
learning techniques to solving the app trajectory recognition
problem, which hasn’t been addressed before.

VII. CONCLUSION

In this paper, we propose ActiveTracker, a framework to
uncover the trajectory of app activities over encrypted Internet
traffic streams. First, the incoming Internet traffic of mobile
apps is segmented into several single-usage subsequences by
a sliding window based approach. Then, each segmented
traffic stream is represented by a temporal-spacial traffic
matrix and a traffic spectrum vector. Using the normalized
data as input, we propose a Deep Neural Network (DNN)
model to combine the features from different domains for app
usage trajectory recognition. Extensive experiments based on
real-world encrypted mobile traffic show that the proposed
approach achieves high accuracy in app usage trajectory
recognition. Our work will rise people’s attention on the
privacy protection of mobile app communications.
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